Action for Better Prediction
Good prediction is necessary for autonomous robotics to make informed decisions in dynamic environments. Improvements can be made to the performance of a given data-driven prediction model by using better sampling strategies when collecting training data. Active learning approaches to optimal sampling have been combined with the mathematically general approaches to incentivizing exploration presented in the curiosity literature via model-based formulations of curiosity. We present an adversarial curiosity method which maximizes a score given by a discriminator network. This score gives a measure of prediction certainty enabling our approach to sample sequences of observations and actions which result in outcomes considered the least realistic by the discriminator. We demonstrate the ability of our active sampling method to achieve higher prediction performance and higher sample efficiency in a domain transfer problem for robotic manipulation tasks. We also present a validation dataset of action-conditioned video of robotic manipulation tasks on which we test the prediction performance of our trained models.
READ FULL TEXT