Active Preference Elicitation via Adjustable Robust Optimization

03/04/2020
by   Phebe Vayanos, et al.
12

We consider the problem faced by a recommender system which seeks to offer a user with unknown preferences an item. Before making a recommendation, the system has the opportunity to elicit the user's preferences by making queries. Each query corresponds to a pairwise comparison between items. We take the point of view of either a risk averse or regret averse recommender system which only possess set-based information on the user utility function. We investigate: a) an offline elicitation setting, where all queries are made at once, and b) an online elicitation setting, where queries are selected sequentially over time. We propose exact robust optimization formulations of these problems which integrate the elicitation and recommendation phases and study the complexity of these problems. For the offline case, where the problem takes the form of a two-stage robust optimization problem with decision-dependent information discovery, we provide an enumeration-based algorithm and also an equivalent reformulation in the form of a mixed-binary linear program which we solve via column-and-constraint generation. For the online setting, where the problem takes the form of a multi-stage robust optimization problem with decision-dependent information discovery, we propose a conservative solution approach. We evaluate the performance of our methods on both synthetic data and real data from the Homeless Management Information System. We simulate elicitation of the preferences of policy-makers in terms of characteristics of housing allocation policies to better match individuals experiencing homelessness to scarce housing resources. Our framework is shown to outperform the state-of-the-art techniques from the literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset