Active Testing: An Efficient and Robust Framework for Estimating Accuracy

07/02/2018
by   Phuc Nguyen, et al.
0

Much recent work on visual recognition aims to scale up learning to massive, noisily-annotated datasets. We address the problem of scaling- up the evaluation of such models to large-scale datasets with noisy labels. Current protocols for doing so require a human user to either vet (re-annotate) a small fraction of the test set and ignore the rest, or else correct errors in annotation as they are found through manual inspection of results. In this work, we re-formulate the problem as one of active testing, and examine strategies for efficiently querying a user so as to obtain an accu- rate performance estimate with minimal vetting. We demonstrate the effectiveness of our proposed active testing framework on estimating two performance metrics, Precision@K and mean Average Precision, for two popular computer vision tasks, multi-label classification and instance segmentation. We further show that our approach is able to save significant human annotation effort and is more robust than alternative evaluation protocols.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset