Actor-Action Semantic Segmentation with Grouping Process Models
Actor-action semantic segmentation made an important step toward advanced video understanding problems: what action is happening; who is performing the action; and where is the action in space-time. Current models for this problem are local, based on layered CRFs, and are unable to capture long-ranging interaction of video parts. We propose a new model that combines these local labeling CRFs with a hierarchical supervoxel decomposition. The supervoxels provide cues for possible groupings of nodes, at various scales, in the CRFs to encourage adaptive, high-order groups for more effective labeling. Our model is dynamic and continuously exchanges information during inference: the local CRFs influence what supervoxels in the hierarchy are active, and these active nodes influence the connectivity in the CRF; we hence call it a grouping process model. The experimental results on a recent large-scale video dataset show a large margin of 60 demonstrates the effectiveness of the dynamic, bidirectional flow between labeling and grouping.
READ FULL TEXT