AdaOja: Adaptive Learning Rates for Streaming PCA

05/28/2019
by   Amelia Henriksen, et al.
0

Oja's algorithm has been the cornerstone of streaming methods in Principal Component Analysis (PCA) since it was first proposed in 1982. However, Oja's algorithm does not have a standardized choice of learning rate (step size) that both performs well in practice and truly conforms to the online streaming setting. In this paper, we propose a new learning rate scheme for Oja's method called AdaOja. This new algorithm requires only a single pass over the data and does not depend on knowing properties of the data set a priori. AdaOja is a novel variation of the Adagrad algorithm to Oja's algorithm in the single eigenvector case and extended to the multiple eigenvector case. We demonstrate for dense synthetic data, sparse real-world data and dense real-world data that AdaOja outperforms common learning rate choices for Oja's method. We also show that AdaOja performs comparably to state-of-the-art algorithms (History PCA and Streaming Power Method) in the same streaming PCA setting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset