Adaptive approximation of nonlinear eigenproblems by minimal rational interpolation

09/27/2022
by   Davide Pradovera, et al.
0

We describe a strategy for solving nonlinear eigenproblems numerically. Our approach is based on the approximation of a vector-valued function, defined as solution of a non-homogeneous version of the eigenproblem. This approximation step is carried out via the minimal rational interpolation method. Notably, an adaptive sampling approach is employed: the expensive data needed for the approximation is gathered at locations that are optimally chosen by following a greedy error indicator. This allows the algorithm to employ computational resources only where "most of the information" on not-yet-approximated eigenvalues can be found. Then, through a post-processing of the surrogate, the sought-after eigenvalues and eigenvectors are recovered. Numerical examples are used to showcase the effectiveness of the method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset