Adversarial Alignment of Multilingual Models for Extracting Temporal Expressions from Text

05/19/2020
by   Lukas Lange, et al.
0

Although temporal tagging is still dominated by rule-based systems, there have been recent attempts at neural temporal taggers. However, all of them focus on monolingual settings. In this paper, we explore multilingual methods for the extraction of temporal expressions from text and investigate adversarial training for aligning embedding spaces to one common space. With this, we create a single multilingual model that can also be transferred to unseen languages and set the new state of the art in those cross-lingual transfer experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset