AdvisingNets: Learning to Distinguish Correct and Wrong Classifications via Nearest-Neighbor Explanations
Besides providing insights into how an image classifier makes its predictions, nearest-neighbor examples also help humans make more accurate decisions. Yet, leveraging this type of explanation to improve both human-AI team accuracy and classifier's accuracy remains an open question. In this paper, we aim to increase both types of accuracy by (1) comparing the input image with post-hoc, nearest-neighbor explanations using a novel network (AdvisingNet), and (2) employing a new reranking algorithm. Over different baseline models, our method consistently improves the image classification accuracy on CUB-200 and Cars-196 datasets. Interestingly, we also reach the state-of-the-art human-AI team accuracy on CUB-200 where both humans and an AdvisingNet make decisions on complementary subsets of images.
READ FULL TEXT