Aerial Mobile Manipulator System to Enable Dexterous Manipulations with Increased Precision
Problems associated with physical interactions using aerial mobile manipulators (AMM) are being independently addressed with respect to mobility and manipulability. Multirotor unmanned aerial vehicles (UAV) are a common choice for mobility while on-board manipulators are increasingly be used for manipulability. However, the dynamic coordination between the UAV and on-board manipulator remains a significant obstacle to enable dexterous manipulation with high precision. This paper presents an AMM system configuration to addresses both the mobility and manipulability issues together. A fully-actuated UAV is chosen to achieve dexterous aerial mobile manipulation, but is limited by the actuation range of the UAV. An on-board manipulator is employed to enhance the performance in terms of dexterity and precision at the end-effector. Experimental results on position keeping of the dexterous hexrotor by withstanding the disturbances caused by the motions of the on-board manipulator and external wind disturbances are presented. Preliminary simulation results on end-point tracking in a simple planar on-board manipulator case is presented.
READ FULL TEXT