AFINet: Attentive Feature Integration Networks for Image Classification

05/10/2021
by   Xinglin Pan, et al.
27

Convolutional Neural Networks (CNNs) have achieved tremendous success in a number of learning tasks including image classification. Recent advanced models in CNNs, such as ResNets, mainly focus on the skip connection to avoid gradient vanishing. DenseNet designs suggest creating additional bypasses to transfer features as an alternative strategy in network design. In this paper, we design Attentive Feature Integration (AFI) modules, which are widely applicable to most recent network architectures, leading to new architectures named AFI-Nets. AFI-Nets explicitly model the correlations among different levels of features and selectively transfer features with a little overhead.AFI-ResNet-152 obtains a 1.24 by about 10

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset