Age of Information in Physical-Layer Network Coding Enabled Two-Way Relay Networks
This paper investigates the information freshness of two-way relay networks (TWRN) operated with physical-layer network coding (PNC). Information freshness is quantified by age of information (AoI), defined as the time elapsed since the generation time of the latest received information update. PNC reduces communication latency of TWRNs by turning superimposed electromagnetic waves into network-coded messages so that end users can send update packets to each other via the relay more frequently. Although sending update packets more frequently is potential to reduce AoI, how to deal with packet corruption has not been well investigated. Specifically, if old packets are corrupted in any hop of a TWRN, one needs to decide the old packets to be dropped or to be retransmitted, e.g., new packets have recent information, but may require more time to be delivered. We study the average AoI with and without ARQ in PNC-enabled TWRNs. We first consider a non-ARQ scheme where old packets are always dropped when corrupted, referred to once-lost-then-drop (OLTD), and a classical ARQ scheme with no packet lost, referred to as reliable packet transmission (RPT). Interestingly, our analysis shows that neither the non-ARQ scheme nor the pure ARQ scheme achieves good average AoI. We then put forth an uplink-lost-then-drop (ULTD) protocol that combines packet drop and ARQ. Experiments on software-defined radio indicate that ULTD significantly outperforms OLTD and RPT in terms of average AoI. Although this paper focuses on TWRNs, we believe the insight of ULTD applies generally to other two-hop networks. Our insight is that to achieve high information freshness, when packets are corrupted in the first hop, new packets should be generated and sent (i.e., old packets are discarded); when packets are corrupted in the second hop, old packets should be retransmitted until successful reception.
READ FULL TEXT