AgFlow: Fast Model Selection of Penalized PCA via Implicit Regularization Effects of Gradient Flow
Principal component analysis (PCA) has been widely used as an effective technique for feature extraction and dimension reduction. In the High Dimension Low Sample Size (HDLSS) setting, one may prefer modified principal components, with penalized loadings, and automated penalty selection by implementing model selection among these different models with varying penalties. The earlier work [1, 2] has proposed penalized PCA, indicating the feasibility of model selection in L_2- penalized PCA through the solution path of Ridge regression, however, it is extremely time-consuming because of the intensive calculation of matrix inverse. In this paper, we propose a fast model selection method for penalized PCA, named Approximated Gradient Flow (AgFlow), which lowers the computation complexity through incorporating the implicit regularization effect introduced by (stochastic) gradient flow [3, 4] and obtains the complete solution path of L_2-penalized PCA under varying L_2-regularization. We perform extensive experiments on real-world datasets. AgFlow outperforms existing methods (Oja [5], Power [6], and Shamir [7] and the vanilla Ridge estimators) in terms of computation costs.
READ FULL TEXT