Aggregating Strategies for Long-term Forecasting

03/18/2018
by   Alexander Korotin, et al.
0

The article is devoted to investigating the application of aggregating algorithms to the problem of the long-term forecasting. We examine the classic aggregating algorithms based on the exponential reweighing. For the general Vovk's aggregating algorithm we provide its generalization for the long-term forecasting. For the special basic case of Vovk's algorithm we provide its two modifications for the long-term forecasting. The first one is theoretically close to an optimal algorithm and is based on replication of independent copies. It provides the time-independent regret bound with respect to the best expert in the pool. The second one is not optimal but is more practical and has O(√(T)) regret bound, where T is the length of the game.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro