Alias-free, matrix-free, and quadrature-free discontinuous Galerkin algorithms for (plasma) kinetic equations

04/20/2020
by   Ammar Hakim, et al.
0

Understanding fundamental kinetic processes is important for many problems, from plasma physics to gas dynamics. A first-principles approach to these problems requires a statistical description via the Boltzmann equation, coupled to appropriate field equations. In this paper we present a novel version of the discontinuous Galerkin (DG) algorithm to solve such kinetic equations. Unlike Monte-Carlo methods we use a continuum scheme in which we directly discretize the 6D phase-space using discontinuous basis functions. Our DG scheme eliminates counting noise and aliasing errors that would otherwise contaminate the delicate field-particle interactions. We use modal basis functions with reduced degrees of freedom to improve efficiency while retaining a high formal order of convergence. Our implementation incorporates a number of software innovations: use of JIT compiled top-level language, automatically generated computational kernels and a sophisticated shared-memory MPI implementation to handle velocity space parallelization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset