An Accurate and Efficient Large-scale Regression Method through Best Friend Clustering

04/22/2021
by   Kun Li, et al.
0

As the data size in Machine Learning fields grows exponentially, it is inevitable to accelerate the computation by utilizing the ever-growing large number of available cores provided by high-performance computing hardware. However, existing parallel methods for clustering or regression often suffer from problems of low accuracy, slow convergence, and complex hyperparameter-tuning. Furthermore, the parallel efficiency is usually difficult to improve while striking a balance between preserving model properties and partitioning computing workloads on distributed systems. In this paper, we propose a novel and simple data structure capturing the most important information among data samples. It has several advantageous properties supporting a hierarchical clustering strategy that is irrelevant to the hardware parallelism, well-defined metrics for determining optimal clustering, balanced partition for maintaining the compactness property, and efficient parallelization for accelerating computation phases. Then we combine the clustering with regression techniques as a parallel library and utilize a hybrid structure of data and model parallelism to make predictions. Experiments illustrate that our library obtains remarkable performance on convergence, accuracy, and scalability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset