An Approach to Ordering Objectives and Pareto Efficient Solutions

05/30/2022
by   Sebastian Hönel, et al.
0

Solutions to multi-objective optimization problems can generally not be compared or ordered, due to the lack of orderability of the single objectives. Furthermore, decision-makers are often made to believe that scaled objectives can be compared. This is a fallacy, as the space of solutions is in practice inhomogeneous without linear trade-offs. We present a method that uses the probability integral transform in order to map the objectives of a problem into scores that all share the same range. In the score space, we can learn which trade-offs are actually possible and develop methods for mapping the desired trade-off back into the preference space. Our results demonstrate that Pareto efficient solutions can be ordered using a low- or no-preference aggregation of the single objectives. When using scores instead of raw objectives during optimization, the process allows for obtaining trade-offs significantly closer to the expressed preference. Using a non-linear mapping for transforming a desired solution in the score space to the required preference for optimization improves this even more drastically.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset