An Effective and Efficient Initialization Scheme for Multi-layer Feedforward Neural Networks

05/16/2020
by   Zebin Yang, et al.
0

Network initialization is the first and critical step for training neural networks. In this paper, we propose a novel network initialization scheme based on the celebrated Stein's identity. By viewing multi-layer feedforward neural networks as cascades of multi-index models, the projection weights to the first hidden layer are initialized using eigenvectors of the cross-moment matrix between the input's second-order score function and the response. The input data is then forward propagated to the next layer and such a procedure can be repeated until all the hidden layers are initialized. Finally, the weights for the output layer are initialized by generalized linear modeling. Such a proposed SteinGLM method is shown through extensive numerical results to be much faster and more accurate than other popular methods commonly used for training neural networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset