An energy-efficient GMRES-Multigrid solver for space-time finite element computation of dynamic poro- and thermoelasticity

03/12/2023
by   Mathias Anselmann, et al.
0

We present families of space-time finite element methods (STFEMs) for a coupled hyperbolic-parabolic system of poro- or thermoelasticity. Well-posedness of the discrete problems is proved. Higher order approximations inheriting most of the rich structure of solutions to the continuous problem on computationally feasible grids are naturally embedded. However, the block structure and solution of the algebraic systems become increasingly complex for these members of the families. We present and analyze a robust geometric multigrid (GMG) preconditioner for GMRES iterations. The GMG method uses a local Vanka-type smoother. Its action is defined in an exact mathematical way. Due to nonlocal coupling mechanisms of unknowns, the smoother is applied on patches of elements. This ensures the damping of error frequencies. In a sequence of numerical experiments, including a challenging three-dimensional benchmark of practical interest, the efficiency of the solver for STFEMs is illustrated and confirmed. Its parallel scalability is analyzed. Beyond this study of classical performance engineering, the solver's energy efficiency is investigated as an additional and emerging dimension in the design and tuning of algorithms and their implementation on the hardware.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset