An Energy Stable BDF2 Fourier Pseudo-Spectral Numerical Scheme for the Square Phase Field Crystal Equation

06/28/2019
by   Kelong Cheng, et al.
0

In this paper we propose and analyze an energy stable numerical scheme for the square phase field crystal (SPFC) equation, a gradient flow modeling crystal dynamics at the atomic scale in space but on diffusive scales in time. In particular, a modification of the free energy potential to the standard phase field crystal model leads to a composition of the 4-Laplacian and the regular Laplacian operators. To overcome the difficulties associated with this highly nonlinear operator, we design numerical algorithms based on the structures of the individual energy terms. A Fourier pseudo-spectral approximation is taken in space, in such a way that the energy structure is respected, and summation-by-parts formulae enable us to study the discrete energy stability for such a high-order spatial discretization. In the temporal approximation, a second order BDF stencil is applied, combined with an appropriate extrapolation for the concave diffusion term(s). A second order artificial Douglas-Dupont-type regularization term is added to ensure energy stability, and a careful analysis leads to the artificial linear diffusion coming at an order lower that that of surface diffusion term. Such a choice leads to reduced numerical dissipation. At a theoretical level, the unique solvability, energy stability are established, and an optimal rate convergence analysis is derived in the ℓ^∞ (0,T; ℓ^2) ∩ℓ^2 (0,T; H_N^3) norm. In the numerical implementation, the preconditioned steepest descent (PSD) iteration is applied to solve for the composition of the highly nonlinear 4-Laplacian term and the standard Laplacian term, and a geometric convergence is assured for such an iteration. Finally, a few numerical experiments are presented, which confirm the robustness and accuracy of the proposed scheme.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset