An Improved Analysis of Gradient Tracking for Decentralized Machine Learning
We consider decentralized machine learning over a network where the training data is distributed across n agents, each of which can compute stochastic model updates on their local data. The agent's common goal is to find a model that minimizes the average of all local loss functions. While gradient tracking (GT) algorithms can overcome a key challenge, namely accounting for differences between workers' local data distributions, the known convergence rates for GT algorithms are not optimal with respect to their dependence on the mixing parameter p (related to the spectral gap of the connectivity matrix). We provide a tighter analysis of the GT method in the stochastic strongly convex, convex and non-convex settings. We improve the dependency on p from 𝒪(p^-2) to 𝒪(p^-1c^-1) in the noiseless case and from 𝒪(p^-3/2) to 𝒪(p^-1/2c^-1) in the general stochastic case, where c ≥ p is related to the negative eigenvalues of the connectivity matrix (and is a constant in most practical applications). This improvement was possible due to a new proof technique which could be of independent interest.
READ FULL TEXT