An Incremental Learning framework for Large-scale CTR Prediction

09/01/2022
by   Petros Katsileros, et al.
0

In this work we introduce an incremental learning framework for Click-Through-Rate (CTR) prediction and demonstrate its effectiveness for Taboola's massive-scale recommendation service. Our approach enables rapid capture of emerging trends through warm-starting from previously deployed models and fine tuning on "fresh" data only. Past knowledge is maintained via a teacher-student paradigm, where the teacher acts as a distillation technique, mitigating the catastrophic forgetting phenomenon. Our incremental learning framework enables significantly faster training and deployment cycles (x12 speedup). We demonstrate a consistent Revenue Per Mille (RPM) lift over multiple traffic segments and a significant CTR increase on newly introduced items.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro