An unified framework for point-level, areal, and mixed spatial data: the Hausdorff-Gaussian Process

08/16/2022
by   Lucas da Cunha Godoy, et al.
0

More realistic models can be built taking into account spatial dependence when analyzing areal data. Most of the models for areal data employ adjacency matrices to assess the spatial structure of the data. Such methodologies impose some limitations. Remarkably, spatial polygons of different shapes and sizes are not treated differently, and it becomes difficult, if not impractical, to compute predictions based on these models. Moreover, spatial misalignment (when spatial information is available at different spatial levels) becomes harder to be handled. These limitations can be circumvented by formulating models using other structures to quantify spatial dependence. In this paper, we introduce the Hausdorff-Gaussian process (HGP). The HGP relies on the Hausdorff distance, valid for both point and areal data, allowing for simultaneously accommodating geostatistical and areal models under the same modeling framework. We present the benefits of using the HGP as a random effect for Bayesian spatial generalized mixed-effects models and via a simulation study comparing the performance of the HGP to the most popular models for areal data. Finally, the HGP is applied to respiratory cancer data observed in Great Glasgow.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset