Angle-Based Cost-Sensitive Multicategory Classification

03/08/2020
by   Yi Yang, et al.
0

Many real-world classification problems come with costs which can vary for different types of misclassification. It is thus important to develop cost-sensitive classifiers which minimize the total misclassification cost. Although binary cost-sensitive classifiers have been well-studied, solving multicategory classification problems is still challenging. A popular approach to address this issue is to construct K classification functions for a K-class problem and remove the redundancy by imposing a sum-to-zero constraint. However, such method usually results in higher computational complexity and inefficient algorithms. In this paper, we propose a novel angle-based cost-sensitive classification framework for multicategory classification without the sum-to-zero constraint. Loss functions that included in the angle-based cost-sensitive classification framework are further justified to be Fisher consistent. To show the usefulness of the framework, two cost-sensitive multicategory boosting algorithms are derived as concrete instances. Numerical experiments demonstrate that proposed boosting algorithms yield competitive classification performances against other existing boosting approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset