Anomalous Edge Detection in Edge Exchangeable Social Network Models
This paper studies detecting anomalous edges in directed graphs that model social networks. We exploit edge exchangeability as a criterion for distinguishing anomalous edges from normal edges. Then we present an anomaly detector based on conformal prediction theory; this detector has a guaranteed upper bound for false positive rate. In numerical experiments, we show that the proposed algorithm achieves superior performance to baseline methods.
READ FULL TEXT