AP-MTL: Attention Pruned Multi-task Learning Model for Real-time Instrument Detection and Segmentation in Robot-assisted Surgery

03/10/2020
by   Mobarakol Islam, et al.
0

Surgical scene understanding and multi-tasking learning are crucial for image-guided robotic surgery. Training a real-time robotic system for the detection and segmentation of high-resolution images provides a challenging problem with the limited computational resource. The perception drawn can be applied in effective real-time feedback, surgical skill assessment, and human-robot collaborative surgeries to enhance surgical outcomes. For this purpose, we develop a novel end-to-end trainable real-time Multi-Task Learning (MTL) model with weight-shared encoder and task-aware detection and segmentation decoders. Optimization of multiple tasks at the same convergence point is vital and presents a complex problem. Thus, we propose an asynchronous task-aware optimization (ATO) technique to calculate task-oriented gradients and train the decoders independently. Moreover, MTL models are always computationally expensive, which hinder real-time applications. To address this challenge, we introduce a global attention dynamic pruning (GADP) by removing less significant and sparse parameters. We further design a skip squeeze and excitation (SE) module, which suppresses weak features, excites significant features and performs dynamic spatial and channel-wise feature re-calibration. Validating on the robotic instrument segmentation dataset of MICCAI endoscopic vision challenge, our model significantly outperforms state-of-the-art segmentation and detection models, including best-performed models in the challenge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro