Approximate Leave-One-Out for Fast Parameter Tuning in High Dimensions

07/07/2018
by   Shuaiwen Wang, et al.
0

Consider the following class of learning schemes: β̂ := _β ∑_j=1^n ℓ(x_j^β; y_j) + λ R(β), (1) where x_i ∈R^p and y_i ∈R denote the i^th feature and response variable respectively. Let ℓ and R be the loss function and regularizer, β denote the unknown weights, and λ be a regularization parameter. Finding the optimal choice of λ is a challenging problem in high-dimensional regimes where both n and p are large. We propose two frameworks to obtain a computationally efficient approximation ALO of the leave-one-out cross validation (LOOCV) risk for nonsmooth losses and regularizers. Our two frameworks are based on the primal and dual formulations of (1). We prove the equivalence of the two approaches under smoothness conditions. This equivalence enables us to justify the accuracy of both methods under such conditions. We use our approaches to obtain a risk estimate for several standard problems, including generalized LASSO, nuclear norm regularization, and support vector machines. We empirically demonstrate the effectiveness of our results for non-differentiable cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset