Approximating the Permanent with Deep Rejection Sampling

08/16/2021
by   Juha Harviainen, et al.
0

We present a randomized approximation scheme for the permanent of a matrix with nonnegative entries. Our scheme extends a recursive rejection sampling method of Huber and Law (SODA 2008) by replacing the upper bound for the permanent with a linear combination of the subproblem bounds at a moderately large depth of the recursion tree. This method, we call deep rejection sampling, is empirically shown to outperform the basic, depth-zero variant, as well as a related method by Kuck et al. (NeurIPS 2019). We analyze the expected running time of the scheme on random (0, 1)-matrices where each entry is independently 1 with probability p. Our bound is superior to a previous one for p less than 1/5, matching another bound that was known to hold when every row and column has density exactly p.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset