Are All Languages Equally Hard to Language-Model?

06/10/2018
by   Ryan Cotterell, et al.
0

For general modeling methods applied to diverse languages, a natural question is: how well should we expect our models to work on languages with differing typological profiles? In this work, we develop an evaluation framework for fair cross-linguistic comparison of language models, using translated text so that all models are asked to predict approximately the same information. We then conduct a study on 21 languages, demonstrating that in some languages, the textual expression of the information is harder to predict with both n-gram and LSTM language models. We show complex inflectional morphology to be a cause of performance differences among languages.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset