Associations between finger tapping, gait and fall risk with application to fall risk assessment
As the world ages, elderly care becomes a big concern of the society. To address the elderly's issues on dementia and fall risk, we have investigated smart cognitive and fall risk assessment with machine learning methodology based on the data collected from finger tapping test and Timed Up and Go (TUG) test. Meanwhile, we have discovered the associations between cognition and finger motion from finger tapping data and the association between fall risk and gait characteristics from TUG data. In this paper, we jointly analyze the finger tapping and gait characteristics data with copula entropy. We find that the associations between certain finger tapping characteristics (number of taps of both hand of bi-inphase and bi-untiphase) and TUG score, certain gait characteristics are relatively high. According to this finding, we propose to utilize this associations to improve the predictive models of automatic fall risk assessment we developed previously. Experimental results show that using the characteristics of both finger tapping and gait as inputs of the predictive models of predicting TUG score can considerably improve the prediction performance in terms of MAE compared with using only one type of characteristics.
READ FULL TEXT