Attacker Behaviour Profiling using Stochastic Ensemble of Hidden Markov Models
Cyber threat intelligence is one of the emerging areas of focus in information security. Much of the recent work has focused on rule-based methods and detection of network attacks using Intrusion Detection algorithms. In this paper we propose a framework for inspecting and modelling the behavioural aspect of an attacker to obtain better insight predictive power on his future actions. For modelling we propose a novel semi-supervised algorithm called Fusion Hidden Markov Model (FHMM) which is more robust to noise, requires comparatively less training time, and utilizes the benefits of ensemble learning to better model temporal relationships in data. This paper evaluates the performances of FHMM and compares it with both traditional algorithms like Markov Chain, Hidden Markov Model (HMM) and recently developed Deep Recurrent Neural Network (Deep RNN) architectures. We conduct the experiments on dataset consisting of real data attacks on a Cowrie honeypot system. FHMM provides accuracy comparable to deep RNN architectures at significant lower training time. Given these experimental results, we recommend using FHMM for modelling discrete temporal data for significantly faster training and better performance than existing methods.
READ FULL TEXT