Augmented Informative Cooperative Perception
Connected vehicles, whether equipped with advanced driver-assistance systems or fully autonomous, are currently constrained to visual information in their lines-of-sight. A cooperative perception system among vehicles increases their situational awareness by extending their perception ranges. Existing solutions imply significant network and computation load, as well as high flow of not-always-relevant data received by vehicles. To address such issues, and thus account for the inherently diverse informativeness of the data, we present Augmented Informative Cooperative Perception (AICP) as the first fast-filtering system which optimizes the informativeness of shared data at vehicles. AICP displays the filtered data to the drivers in augmented reality head-up display. To this end, an informativeness maximization problem is presented for vehicles to select a subset of data to display to their drivers. Specifically, we propose (i) a dedicated system design with custom data structure and light-weight routing protocol for convenient data encapsulation, fast interpretation and transmission, and (ii) a comprehensive problem formulation and efficient fitness-based sorting algorithm to select the most valuable data to display at the application layer. We implement a proof-of-concept prototype of AICP with a bandwidth-hungry, latency-constrained real-life augmented reality application. The prototype realizes the informative-optimized cooperative perception with only 12.6 milliseconds additional latency. Next, we test the networking performance of AICP at scale and show that AICP effectively filter out less relevant packets and decreases the channel busy time.
READ FULL TEXT