Authorship clustering using multi-headed recurrent neural networks

08/16/2016
by   Douglas Bagnall, et al.
0

A recurrent neural network that has been trained to separately model the language of several documents by unknown authors is used to measure similarity between the documents. It is able to find clues of common authorship even when the documents are very short and about disparate topics. While it is easy to make statistically significant predictions regarding authorship, it is difficult to group documents into definite clusters with high accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro