Auto-ML Deep Learning for Rashi Scripts OCR
In this work we propose an OCR scheme for manuscripts printed in Rashi font that is an ancient Hebrew font and corresponding dialect used in religious Jewish literature, for more than 600 years. The proposed scheme utilizes a convolution neural network (CNN) for visual inference and Long-Short Term Memory (LSTM) to learn the Rashi scripts dialect. In particular, we derive an AutoML scheme to optimize the CNN architecture, and a book-specific CNN training to improve the OCR accuracy. The proposed scheme achieved an accuracy of more than 99.8 Responsa Project dataset.
READ FULL TEXT