Automated Crabgrass Detection in Aerial Imagery with Context
In this paper, we demonstrate the ability to discriminate between cultivated maize plant and crabgrass weed image segments using the context surrounding the image segments. While convolutional neural networks have brought state of the art accuracies within object detection, errors arise when objects in different classes share similar features. This scenario often occurs when objects in images are viewed at too small of a scale to discern distinct differences in features, causing images to be incorrectly classified or localized. To solve this problem, we will explore using context when classifying image segments. This technique involves feeding a convolutional neural network a central square image along with a border of its direct surroundings at train and test times. This means that although images are labelled at a smaller scale to preserve accurate localization, the network classifies the images and learns features that include the wider context. We demonstrate the benefits of this context technique in the object detection task through a case study of crabgrass detection in maize fields. In this standard situation, adding context alone nearly halved the error of the neural network from 7.1 epoch with context, the network also achieved a higher accuracy than the network without context did after 50 epochs. The benefits of using the context technique are likely to particularly evident in agricultural contexts in which parts (such as leaves) of several plants may appear similar when not taking into account the context in which those parts appear.
READ FULL TEXT