Automated Identification of Eviction Status from Electronic Health Record Notes
Objective: Evictions are involved in a cascade of negative events that can lead to unemployment, homelessness, long-term poverty, and mental health problems. In this study, we developed a natural language processing system to automatically detect eviction incidences and their attributes from electronic health record (EHR) notes. Materials and Methods: We annotated eviction status in 5000 EHR notes from the Veterans Health Administration. We developed a novel model, called Knowledge Injection based on Ripple Effects of Social and Behavioral Determinants of Health (KIRESH), that has shown to substantially outperform other state-of-the-art models such as fine-tuning pre-trained language models like BioBERT and Bio_ClinicalBERT. Moreover, we designed a prompt to further improve the model performance by using the intrinsic connection between the two sub-tasks of eviction presence and period prediction. Finally, we used the Temperature Scaling-based Calibration on our KIRESH-Prompt method to avoid over-confidence issues arising from the imbalance dataset. Results: KIRESH-Prompt achieved a Macro-F1 of 0.6273 (presence) and 0.7115 (period), which was significantly higher than 0.5382 (presence) and 0.67167 (period) for just fine-tuning Bio_ClinicalBERT model. Conclusion and Future Work: KIRESH-Prompt has substantially improved eviction status classification. In future work, we will evaluate the generalizability of the model framework to other applications.
READ FULL TEXT