Automatic Weight Estimation of Harvested Fish from Images

09/06/2019
by   Dmitry A. Konovalov, et al.
0

Approximately 2,500 weights and corresponding images of harvested Lates calcarifer (Asian seabass or barramundi) were collected at three different locations in Queensland, Australia. Two instances of the LinkNet-34 segmentation Convolutional Neural Network (CNN) were trained. The first one was trained on 200 manually segmented fish masks with excluded fins and tails. The second was trained on 100 whole-fish masks. The two CNNs were applied to the rest of the images and yielded automatically segmented masks. The one-factor and two-factor simple mathematical weight-from-area models were fitted on 1072 area-weight pairs from the first two locations, where area values were extracted from the automatically segmented masks. When applied to 1,400 test images (from the third location), the one-factor whole-fish mask model achieved the best mean absolute percentage error (MAPE), MAPE=4.36 weight-from-image regression CNNs were also trained, where the no-fins based CNN performed best on the test images with MAPE=4.28

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset