Automatic Weighted Matching Rectifying Rule Discovery for Data Repairing
Data repairing is a key problem in data cleaning which aims to uncover and rectify data errors. Traditional methods depend on data dependencies to check the existence of errors in data, but they fail to rectify the errors. To overcome this limitation, recent methods define repairing rules on which they depend to detect and fix errors. However, all existing data repairing rules are provided by experts which is an expensive task in time and effort. Besides, rule-based data repairing methods need an external verified data source or user verifications; otherwise they are incomplete where they can repair only a small number of errors. In this paper, we define weighted matching rectifying rules (WMRRs) based on similarity matching to capture more errors. We propose a novel algorithm to discover WMRRs automatically from dirty data in-hand. We also develop an automatic algorithm for rules inconsistency resolution. Additionally, based on WMRRs, we propose an automatic data repairing algorithm (WMRR-DR) which uncovers a large number of errors and rectifies them dependably. We experimentally verify our method on both real-life and synthetic data. The experimental results prove that our method can discover effective WMRRs from the dirty data in-hand, and perform dependable and full-automatic repairing based on the discovered WMRRs, with higher accuracy than the existing dependable methods.
READ FULL TEXT