Autotuning Plug-and-Play Algorithms for MRI

12/01/2020
by   Saurav K. Shastri, et al.
0

For magnetic resonance imaging (MRI), recently proposed "plug-and-play" (PnP) image recovery algorithms have shown remarkable performance. These PnP algorithms are similar to traditional iterative algorithms like FISTA, ADMM, or primal-dual splitting (PDS), but differ in that the proximal update is replaced by a call to an application-specific image denoiser, such as BM3D or DnCNN. The fixed-points of PnP algorithms depend upon an algorithmic stepsize parameter, however, which must be tuned for optimal performance. In this work, we propose a fast and robust auto-tuning PnP-PDS algorithm that exploits knowledge of the measurement-noise variance that is available from a pre-scan in MRI. Experimental results show that our algorithm converges very close to genie-tuned performance, and does so significantly faster than existing autotuning approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro