Bad Primes in Computational Algebraic Geometry
Computations over the rational numbers often suffer from intermediate coefficient swell. One solution to this problem is to apply the given algorithm modulo a number of primes and then lift the modular results to the rationals. This method is guaranteed to work if we use a sufficiently large set of good primes. In many applications, however, there is no efficient way of excluding bad primes. In this note, we describe a technique for rational reconstruction which will nevertheless return the correct result, provided the number of good primes in the selected set of primes is large enough. We give a number of illustrating examples which are implemented using the computer algebra system Singular and the programming language Julia. We discuss applications of our technique in computational algebraic geometry.
READ FULL TEXT