Bayesian semiparametric long memory models for discretized event data

04/17/2020
by   Antik Chakraborty, et al.
0

We introduce a new class of semiparametric latent variable models for long memory discretized event data. The proposed methodology is motivated by a study of bird vocalizations in the Amazon rain forest; the timings of vocalizations exhibit self-similarity and long range dependence ruling out models based on Poisson processes. The proposed class of FRActional Probit (FRAP) models is based on thresholding of a latent process consisting of an additive expansion of a smooth Gaussian process with a fractional Brownian motion. We develop a Bayesian approach to inference using Markov chain Monte Carlo, and show good performance in simulation studies. Applying the methods to the Amazon bird vocalization data, we find substantial evidence for self-similarity and non-Markovian/Poisson dynamics. To accommodate the bird vocalization data, in which there are many different species of birds exhibiting their own vocalization dynamics, a hierarchical expansion of FRAP is provided in Supplementary Materials.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset