Beamforming and Power Allocation for Double-RIS-aided Two-way Directional Modulation Network

01/22/2022
by   Rongen Dong, et al.
0

To improve the information exchange rate between Alice and Bob in traditional two-way directional modulation (TWDM) network, a new double-reconfigurable intelligent surface (RIS)-aided TWDM network is proposed. To achieve the low-complexity transmitter design, two analytical precoders, one closed-form method of adjusting the RIS phase-shifting matrices, and semi-iterative power allocation (PA) strategy of maximizing secrecy sum rate (SSR) are proposed. First, the geometric parallelogram (GPG) criterion is employed to give the phase-shifting matrices of RISs. Then, two precoders, called maximizing singular value (Max-SV) and maximizing signal-to-leakage-noise ratio (Max-SLNR), are proposed to enhance the SSR. Evenly, the maximizing SSR PA with hybrid iterative closed-form (HICF) is further proposed to improve the SSR and derived to be one root of a sixth-order polynomial computed by: (1) the Newton-Raphson algorithm is repeated twice to reduce the order of the polynomial from six to four; (2) the remaining four feasible solutions can be directly obtained by the Ferrari's method. Simulation results show that using the proposed Max-SV and Max-SLNR, the proposed GPG makes a significant SSR improvement over random phase and no RIS. Given GPG, the proposed Max-SV outperforms the proposed leakage for small-scale or medium-scale RIS. Particularly, the proposed HICF PA stragey shows about ten percent performance gain over equal PA.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset