Beyond Shared Vocabulary: Increasing Representational Word Similarities across Languages for Multilingual Machine Translation

05/23/2023
by   Di Wu, et al.
0

Using a shared vocabulary is common practice in Multilingual Neural Machine Translation (MNMT). In addition to its simple design, shared tokens play an important role in positive knowledge transfer, which manifests naturally when the shared tokens refer to similar meanings across languages. However, natural flaws exist in such a design as well: 1) when languages use different writing systems, transfer is inhibited, and 2) even if languages use similar writing systems, shared tokens may have completely different meanings in different languages, increasing ambiguity. In this paper, we propose a re-parameterized method for building embeddings to alleviate the first problem. More specifically, we define word-level information transfer pathways via word equivalence classes and rely on graph networks to fuse word embeddings across languages. Our experiments demonstrate the advantages of our approach: 1) the semantics of embeddings are better aligned across languages, 2) our method achieves significant BLEU improvements on high- and low-resource MNMT, and 3) only less than 1.0% additional trainable parameters are required with a limited increase in computational costs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset