BF++: a language for general-purpose program synthesis
Most state of the art decision systems based on Reinforcement Learning (RL) are data-driven black-box neural models, where it is often difficult to incorporate expert knowledge into the models or let experts review and validate the learned decision mechanisms. Knowledge-insertion and model review are important requirements in many applications involving human health and safety. One way to bridge the gap between data and knowledge driven systems is program synthesis: replacing a neural network that outputs decisions with a symbolic program generated by a neural network or by means of genetic programming. We propose a new programming language, BF++, designed specifically for automatic programming of agents in a Partially Observable Markov Decision Process (POMDP) setting and apply neural program synthesis to solve standard OpenAI Gym benchmarks.
READ FULL TEXT