Bi-log-concavity: some properties and some remarks towards a multi-dimensional extension

03/18/2019
by   Adrien Saumard, et al.
0

Bi-log-concavity of probability measures is a univariate extension of the notion of log-concavity that has been recently proposed in a statistical literature. Among other things, it has the nice property from a modelisation perspective to admit some multimodal distributions, while preserving some nice features of log-concave measures. We compute the isoperimetric constant for a bi-log-concave measure, extending a property available for log-concave measures. This implies that bi-log-concave measures have exponentially decreasing tails. Then we show that the convolution of a bi-log-concave measure with a log-concave one is bi-log-concave. Consequently, infinitely differentiable, positive densities are dense in the set of bi-log-concave densities for L_p-norms, p ∈ [1;+∞]. We also derive a necessary and sufficient condition for the convolution of two bi-log-concave measures to be bi-log-concave. We conclude this note by discussing ways of defining a multi-dimensional extension of the notion of bi-log-concavity. We propose an approach based on a variant of the isoperimetric problem, restricted to half-spaces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset