BitTensor: An Intermodel Intelligence Measure

03/09/2020
by   Jacob Steeves, et al.
0

A purely inter-model version of a machine intelligence benchmark would allow us to measure intelligence directly as information without projecting that information onto labeled datasets. We propose a framework in which other learners measure the informational significance of their peers across a network and use a digital ledger to negotiate the scores. However, the main benefits of measuring intelligence with other learners are lost if the underlying scores are dishonest. As a solution, we show how competition for connectivity in the network can be used to force honest bidding. We first prove that selecting inter-model scores using gradient descent is a regret-free strategy: one which generates the best subjective outcome regardless of the behavior of others. We then empirically show that when nodes apply this strategy, the network converges to a ranking that correlates with the one found in a fully coordinated and centralized setting. The result is a fair mechanism for training an internet-wide, decentralized and incentivized machine learning system, one which produces a continually hardening and expanding benchmark at the generalized intersection of the participants.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro