Boosting Search Performance Using Query Variations

11/15/2018
by   Rodger Benham, et al.
0

Rank fusion is a powerful technique that allows multiple sources of information to be combined into a single result set. However, to date fusion has not been regarded as being cost-effective in cases where strict per-query efficiency guarantees are required, such as in web search. In this work we propose a novel solution to rank fusion by splitting the computation into two parts -- one phase that is carried out offline to generate pre-computed centroid answers for queries with broadly similar information needs, and then a second online phase that uses the corresponding topic centroid to compute a result page for each query. We explore efficiency improvements to classic fusion algorithms whose costs can be amortized as a pre-processing step, and can then be combined with re-ranking approaches to dramatically improve effectiveness in multi-stage retrieval systems with little efficiency overhead at query time. Experimental results using the ClueWeb12B collection and the UQV100 query variations demonstrate that centroid-based approaches allow improved retrieval effectiveness at little or no loss in query throughput or latency, and with reasonable pre-processing requirements. We additionally show that queries that do not match any of the pre-computed clusters can be accurately identified and efficiently processed in our proposed ranking pipeline.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset