Boosting Variational Inference: an Optimization Perspective

08/05/2017
by   Francesco Locatello, et al.
0

Variational Inference is a popular technique to approximate a possibly intractable Bayesian posterior with a more tractable one. Recently, Boosting Variational Inference has been proposed as a new paradigm to approximate the posterior by a mixture of densities by greedily adding components to the mixture. In the present work, we study the convergence properties of this approach from a modern optimization viewpoint by establishing connections to the classic Frank-Wolfe algorithm. Our analyses yields novel theoretical insights on the Boosting of Variational Inference regarding the sufficient conditions for convergence, explicit sublinear/linear rates, and algorithmic simplifications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset