Boundary-Conforming Finite Element Methods for Twin-Screw Extruders: Unsteady - Temperature-Dependent - Non-Newtonian Simulations
We present a boundary-conforming space-time finite element method to compute the flow inside co-rotating, self-wiping twin-screw extruders. The mesh update is carried out using the newly developed Snapping Reference Mesh Update Method (SRMUM). It allows to compute time-dependent flow solutions inside twin-screw extruders equipped with conveying screw elements without any need for re-meshing and projections of solutions - making it a very efficient method. We provide cases for Newtonian and non-Newtonian fluids in 2D and 3D, that show mesh convergence of the solution as well as agreement to experimental results. Furthermore, a complex, unsteady and temperature-dependent 3D test case with multiple screw elements illustrates the potential of the method also for industrial applications.
READ FULL TEXT