Boundless: Generative Adversarial Networks for Image Extension

08/19/2019
by   Piotr Teterwak, et al.
1

Image extension models have broad applications in image editing, computational photography and computer graphics. While image inpainting has been extensively studied in the literature, it is challenging to directly apply the state-of-the-art inpainting methods to image extension as they tend to generate blurry or repetitive pixels with inconsistent semantics. We introduce semantic conditioning to the discriminator of a generative adversarial network (GAN), and achieve strong results on image extension with coherent semantics and visually pleasing colors and textures. We also show promising results in extreme extensions, such as panorama generation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset