Bounds on Mixed Codes with Finite Alphabets

12/19/2022
by   Yonatan Yehezkeally, et al.
0

Mixed codes, which are error-correcting codes in the Cartesian product of different-sized spaces, model degrading storage systems well. While such codes have previously been studied for their algebraic properties (e.g., existence of perfect codes) or in the case of unbounded alphabet sizes, we focus on the case of finite alphabets, and generalize the Gilbert-Varshamov, sphere-packing, Elias-Bassalygo, and first linear programming bounds to that setting. In the latter case, our proof is also the first for the non-symmetric mono-alphabetic q-ary case using Navon and Samorodnitsky's Fourier-analytic approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset